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Abstract.
Classification of point clouds by different types of geometric primitives
is an essential part in the reconstruction process of CAD geometry. We
use support vector machines (SVM) to label patches in point clouds
with the class labels tori, ellipsoids, spheres, cones, cylinders or planes.
For the classification features based on different geometric properties like
point normals, angles, and principal curvatures are used. These geometric
features are estimated in the local neighborhood of a point of the point
cloud. Computing these geometric features for a random subset of the
point cloud yields a feature distribution. Different features are combined
for achieving best classification results. To minimize the time consuming
training phase of SVMs, the geometric features are first evaluated using
linear discriminant analysis (LDA).
LDA and SVM are machine learning approaches that require an initial
training phase to allow for a subsequent automatic classification of a
new data set. For the training phase point clouds are generated using
a simulation of a laser scanning device. Additional noise based on an
laser scanner error model is added to the point clouds. The resulting
LDA and SVM classifiers are then used to classify geometric primitives
in simulated and real laser scanned point clouds.
Compared to other approaches, where all known features are used for
classification, we explicitly compare novel against known geometric fea-
tures to prove their effectiveness.

1 Introduction

Since laser scanners and similar devices are wide spread and have become less
expensive, the need for automatic CAD reconstruction methods increases. Orig-
inally such devices were used only for quality control in the manufacturing pro-
cess, but today also for reverse engineering and reconstruction of technical and
non-technical components. For the reconstruction of geometric primitives like
cones, planes, or spheres, detection is usually implicit by fitting different prim-
itive types and deciding based on error thresholds. In noisy point clouds these
often RANSAC-based methods [FB81] may fit the wrong geometric primitive
because it yields the smallest error. Explicit classification can solve this phe-
nomenon. Denker et al. [DHR∗13] proposed a system for online reconstruction,
in which a fixed set of heuristic rules based on estimation of local differential ge-
ometric properties is used for primitive detection. Cylinders, spheres, and planes
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are the only supported primitive types of the system and additional methods for
the detection of other primitives such as cones or tori are needed.

Our system classifies the geometry of small patches of a point cloud using
machine learning methods. In machine learning input samples classified by learn-
ing to discriminate different classes within feature spaces from training samples.
Thus, these machine learning algorithms require feature vectors of a fixed length
as input. The computation of these feature vectors from raw 3d point data is
called feature extraction.

Feature extraction in point clouds and other 3d data is an important topic,
that has been addressed from various perspectives. Most of the existing work is
either intended for meshed data or for 3d shape recognition in object databases.
It can be used to detect complex objects like cars, lamp posts or parking meters
in 3d scans of urban environments [GKF09] or to create object recognition for
the purpose of robot-object interaction [HHYR12]. Describing such 3D-shapes
is possible by a variety of geometric features extracted from point clouds. Sim-
ple point features like shape distributions can be used to measure the similarity
between different 3d shapes [OFCD02]. The distributions are represented as his-
tograms sampled from angles, distances, areas, and volumes of random point
tuples. Considering the local neighborhood of points, features based on point
pairs and their normals are introduced in [WHH03]. Additional distributions for
identifying shapes contained in point clouds, based on distances, are proposed in
[MS09]. Another neighborhood based method for shape description uses curva-
tures and curvature directions. Hetzel et al. [HLLS01] use histograms based on
normals and curvatures to identify objects in range images. In [RMBB08] point
neighborhoods are used to describe a 16 dimensional feature histogram for point
cloud segmentation.

Recently, geometric features are used for classification based on machine
learning methods. Endoh et al. [EYO12] use locally linear embedding to learn
object shapes. They explore clustering to reduce the number of required training
samples. The impact of supervised, semi-supervised, and unsupervised dimension
reduction as a learning method for shape-classification is studied by in [YTSO08]
for the surflet pair feature of [WHH03]. Using support vector machines with
point features as well as curvature features to classify surfaces is proposed in
[AFB∗12] for a small set of geometric primitives including edges and corners. The
mentioned feature-based methods only use a small subset of possible point could
features. It is also assumed that using all features leads to high discriminative
power in classification and tests of particular feature and feature-combination
performance are missing.

Our approach is to take a small patch of the original point cloud, extract its
geometric features and use a pre-trained machine learning algorithm to detect
which geometric primitive is most likely represented by the point cloud patch.
This approach needs no fixed heuristic rules or thresholds and can be extended
to additional primitives, provided enough training data exist. We explicitly test
single and combined feature performance for detection.
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2 Methods

To apply machine learning algorithms such as linear discriminant analysis (LDA)
or support-vector machines (SVM) a training phase is required. In the training
phase the LDA and SVM are exposed to a large set of pre-classified point clouds
to learn to discriminate between the different classes. The information about
these classes is implicitly represented in distributions of geometric features ex-
acted form the local geometry in the point cloud. Acquiring real scanned point
clouds for the training is difficult, because scanning a sufficiently large number
of training point clouds would require a substantial amount of time and a large
number of different real world models. Therefore, the training point clouds are
generated using a laser scanning simulation with a built-in error model.

In this section first the geometric features are described, Section 2.1. Based on
the feature histograms the machine learning approaches are presented in Section
2.2. To generate the necessary training point clouds a scan simulation is used
(Section 2.3), showing the resulting feature spaces in Section 2.4.

2.1 Geometric features and feature histograms

The feature histograms used for LDA or SVM are required to have a fixed length.
To achieve this, the extracted geometric features are arranged in histograms with
64, 96, 128, 256, or 512 bins. These histograms are usually normalized and might
be cropped to eliminate the influence of outliers.

The first four geometric features we used for comparison depend only on the
location of the points in the point cloud and are adopted from [OFCD02].

F.1 Point angles are computed as the angles between two vectors spanned by
three random points.

F.2 Point distances δ are computed by the Euclidean distance between two
random points.

F.3 Triangle areas are computed from the square root of the triangle area of
three random points.

F.4 Tetrahedron volumes are computed from the cubic root of the tetrahedron
volumes V of four random points p1, . . . ,p4, i.e.

V = |(p1 − p4) · ((p2 − p4)× (p3 − p4))|/6.

The points required for these features are mutually different, uniformly dis-
tributed random points from the point cloud. The resulting feature histograms
have 64 bins and are normalized to [0, 180] for F.1 and to [0, 1] for the others.

Geometric features that do not only depend on point locations are normal
angles and normal directions.

F.5 Normal angles are given by angles between normals at two random points.
F.6 Normal directions are coordinates of the normalized normal at all points.

Thus, the feature histogram for F.6 is the concatenation of the three 32 bin
histograms for the individual coordinates ranging from −1 to 1.

Geometric features that depend on the curvature are defined as follows:
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F.7 Curvature angles are computed as the angles between the two corresponding
principal curvature directions v1, v2 at two random points.

F.8 Curvature directions are given by the six coordinates of two normalized prin-
cipal curvature directions v1, v2 at all points. Optionally, each coordinate
can be weighted by the absolute value of the principal curvatures κ1 or κ2.

F.9 Curvature differences are computed from the absolute differences of the
principal curvatures κ1, κ2 and Gaussian K = κ1κ2 and mean curvature
H = (κ1 + κ2)/2 at two random points, optionally weighted by distance.

The geometric feature F.7 results in two 64-bin histograms normalized to [0, 180]
concatenated to one 128-bin histogram. The feature histogram for F.8 is the
concatenation of the six 32-bin histograms for the individual coordinates ranging
from −1 to 1. For the feature histogram for F.9 the four 32-curvature-bin are
cropped to the 0.05 to 0.95 percentile range, normalized, and concatenated.

In order to combine the classification capabilities of individual geometric
features, they can be combined into more general features. In [WHH03] combined
feature based on two surflet pairs are proposed. These surflet pairs are defined as
point-normal-pairs (p1,n1) and (p2,n2) with normalized normals n1,n2. From
two surflet pairs a local, right-handed, orthonormal frame is computed

u = n1, v = ((p2 − p1)× u)/‖(p2 − p1)× u‖, w = u× v.

This frame yields three geometric attributes

α = arctan(w · n2,u · n2), β = v · n2, γ = u(p2 − p1)/‖p2 − p1‖.

Together with the point distance δ these attributes define the surflet pair feature:

F.10 Surflet pairs are computed as the tuple (α, β, γ, δ) for two random points.

Thus, the surflet pair feature yields a 128-bin histogram normalized to [0, 1].
To construct other combined features we combined those features that proved

effective as individual features. The combined feature histograms are concate-
nated from the histograms of the individual features.

F.11 Triple combinations are combined from the three best geometric features
depending on point, normal, and curvature information: F.4, F.5, F.7.

F.12 Simple surflet combinations are combined from F.4, F.5, and F.10.
F.13 Extended surflet combinations are combined from F.10 and F.11.

Remark 1. For comparison we tested nine additional geometric features, e.g.
the shape index [KvD92]. However, all these features proved less effective in the
experiments with a true positive classification rate below 0.5. These additional
geometric features are given in Appendix A.

Normal and principal curvature estimation For the computation of the ge-
ometric features normals, principal curvatures and principal curvature directions
at random points in the point cloud must be estimated.
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To estimate a local normal at a point p, the set P of its 100 closest neighbors
is determined. Computing a principal component analysis (PCA) for P yields the
eigenvector corresponding to the smallest eigenvalue of the covariance matrix.
This eigenvector np is used to estimate the normal at point p.

To estimate the principal curvatures and principal curvature directions at
p the polynomial fitting of osculating jets of [CP05] is used. The points of P
are approximated by a bi-variate height function z(x, y) over the estimated tan-
gent plane defined by np. Then, z(x, y) is computed by the truncated Taylor
expansion of order n using the n-jet Jn

z(x, y) = Jn(x, y) + o (‖(x, y)‖n) , Jn(x, y) =

n∑
k=0

k∑
i=0

bk−i,i
(k − i)!i!

xk−iyi.

The n-jet has the same differential geometric properties up to order n as the
underlying surface. Since Jn is only approximated, it yields approximated dif-
ferential geometric quantities. The (n + 1)(n + 2)/2 jet coefficients bk−i,i are
computed by least squares approximation. They are used to approximate the
Weingarten map of the surface. Its eigenvalues and eigenvectors yield estimates
for the principal curvatures κ1, κ2 and principal curvature directions v1, v2. For
the implementation we used the CGAL-library [CGA].

2.2 Machine learning

Two machine learning algorithms were used: Linear Discriminant Analysis (LDA)
and a d-class Support Vector Machine (SVM) for open and closed classification.

Supervised learning methods are designed to classify new data with respect to
a large body of pre-classified training data. The training data are represented as
feature vectors which are chosen to separate the different classes from each other.
These features live in a high-dimensional feature space F . In supervised learning
the objective is to compute hypersurfaces separating the classes in feature space.
These hypersurfaces are then used to classify new input data by deciding on
which side of the hypersurfaces the data reside. In case of SVMs the additional
objective is to maximize the margin between two classes in relation to their
separating hypersurface. Figure 1 illustrates this concept in case of separating
hyperplanes in a two-dimensional feature space.

Linear discriminant analysis The training data consist of feature data xi ∈
F that are manually assigned to the correct class yi ∈ {1, . . . , d} for d-class
classification. So, the training data are given by

Xd = {(x1, y1), ..., (xn, yn)| xi ∈ F, yi ∈ {1...d}}.

For LDA the data are assumed to be separable by a hyperplane which is
represented by its normal ω, the weight vector, and bias b as

ωtx + b = 0,
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margin

support vectors

separating hyper-planeslack

Fig. 1: Separating hyperplane, margin, support vectors, and slack for a two di-
mensional feature space.

for x ∈ F . For only two classes this results in a decision function fω,b(x) =
sign(ωtx + b) that assigns the class labels ±1 to a previously unseen test data
point x. Assuming a normal distribution with means µ1 and µ2 and common
co-variance Σ for the two classes, the weight vector and bias are given by

ω = Σ−1(µ1 − µ2), b = (µ1 + µ2)/2.

This concept can be extended to d-class classification (see below), [DHS01].

Support vector machine An SVM has the additional objective to maximize
the margin between two classes. This results in finding ω and b such that

Φ(ω) = ωtω/2 (1)

is minimized with respect to the constraints

yi(ω
txi + b) ≥ 1, i = 1, . . . , n, (2)

see [CST00]. The minimum of (1) subject to (2) is computed by dualization using
Lagrange multipliers. The Kuhn-Tucker-conditions imply that the weight vector
ω can be represented in terms of the Lagrange multipliers α = (α1, . . . , αn)
and the training data as ω =

∑n
i=1 αi yi xi. So, instead of minimizing (1) the

resulting Lagrangian

Φ∗(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yiyj xtixj . (3)

is maximized with respect to the constraints

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , n.
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If in the solution αi 6= 0, the corresponding xi is called support vector.
For noisy data requiring linear separability is too restrictive. Thus, slack

variables ξi are used to allow for some data inside the margin, see Fig. 1. The
objective function to minimize additionally penalizes excessive slack variables

Φ(ω) =
1

2
ωtω + C

n∑
i=1

ξi (4)

with respect to the constraints

yi(ω
txi + b) ≥ 1− ξi, i = 1, . . . , n. (5)

The minimum of (4) subject to (5) is again computed via dualization and La-
grange multipliers yielding the maximization problem (3) with the additional
constraints αi ≤ C, i = 1, . . . , n.

For some problems, the classes cannot be separated by hyperplanes, but only
by nonlinear hypersurfaces. So, the scalar product xtixj is replaced by a kernel
K(xi,xj). The kernel is chosen such that it corresponds to a scalar product in a
high-dimensional feature space. For our tests we used the Gaussian RBF Kernel

K(xi,xj) = exp(−γ‖xi − xj‖2).

With this kernel the classifier for new data X ∈ F is given by fα,b(x) =
sign(mα,b(x)) with the data margin

mα,b(x) =

n∑
i=1

αiyiK(xi,x) + b.

Multi-class classification For d-class classification the SVM concept is ex-
tended using the one-versus-all approach. Given the d-class training data Xd
the one-versus-all approach uses d binary SVMs. Each binary SVM is trained to
separate one class from all others. These d binary SVMs can be used in two differ-
ent ways to classify new data x ∈ F . For closed SVM classification (cSVM) the
class with the largest data margin mα,b(x) is selected to be the class x belongs
to. For open SVM classification (oSVM) the class with the largest non-negative
data margin mα,b(x) is selected. If all margins are negative, x is not classified.

For more details on SVM based learning methods refer to [CST00,SS01]. For
our implementation we used the SHARK library [IHMG08].

Model selection Model selection refers to the process of selecting the best pa-
rameters C and γ for the SVM. For this optimization usually a grid search in the
two-dimensional (C, γ)-space is used. We used a two-dimensional non-uniform
grid on which all pairwise parameter combinations are evaluated. To compare
the different models, k-fold cross validation is used. We used k = 5. First, the
training data X are divided into k equally sized sub-sets Si, i = 1, . . . , k. Then,
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for each grid point the SVM is trained k-times on each training set Ti = X \ Si.
After the training on Ti the SVM is tested with the data from Si yielding a true-
positive-rate. For each grid point the k true-positive-rates are averaged. The best
(C, γ)-combination is given by the grid point with the largest true-positive-rate.
Optimization results are shown in Appendix A.

2.3 Laser scanning simulation and training data generation

For the training a large set of training point clouds is required which is generated
by a laser scanning simulation. This simulation is based on tracing the rays
of a virtual laser line probe onto virtual geometric primitives. It simulates the
behavior of real laser scanners by sweeping fans of rays from a scan position over
the geometric primitive. To define the position and pose of the laser probe two
spheres around the centroid of the geometric primitive are constructed with radii
of 8 and 0.02 units. Each scan position and pose is defined by a random point p1

on the outer sphere, a view direction s1 = p2−p1 by a random point p2 on the
inner sphere, and a random view-up vector s2 ⊥ s1. The plane perpendicular to
s2 contains the reference fan, that is a cone of rays with aperture angle ϕ1 and
axis s1. The reference fan contains ϕ1/ϕ3 equidistant rays. To generate additional
fans at p1 the reference fan is rotated around s3 = s2 × s1 by ϕ2-angle steps.
p1, p2 and s2 are uniformly distributed. This setup is shown in Figure 3.

Fig. 2: Point cloud patch of a sphere.

ϕ3
ϕ2

p2

p1

s1

s2

s3ϕ1

Fig. 3: The setup of the simulation
of a laser scanner.

Additionally, the laser scanner model includes two types of systematic errors.
The first error affects the scanner position p1 by a random offset adding the same
error to all points of one fan. The second error affects the distance measure for
each individual scanned point. Both errors are normally distributed with zero
mean and standard deviation of 0.0125 and 0.0025, respectively.

There are six classes of geometric primitives: planes, cylinders, cones, spheres,
ellipsoids, and tori. The training data were generated by extracting point cloud
patches from a simulated scan of a complete primitive. Each point cloud patch
was defined to contain all points of the point cloud within a cube of edge length
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0.7 centered at a random point of the point cloud. Figure 2 shows an example
point cloud patch.

We use 9600 point cloud patches with equal distribution from one of the six
primitive classes as training data. 7680 patches are used for training, 1920 are
used to evaluate the method by the true-positive-rate. The geometric parameters
for the primitives are normally distributed with mean and standard deviation
as in Table 1. To compute the geometric features from the point cloud patches
often random point pairs, triplets, or quadruplets were chosen. In these cases
217 feature values were sufficient to yield stable feature histograms.

Primitive Mean Standard Primitive Mean Standard
parameter deviation parameter deviation

Plane radius 3.0 0.5 Sphere radius 2.0 0.4
Cylinder height 3.0 0.5 Ellipsoid radius 2.0 0.4
Cylinder radius 2.0 0.4 Torus radius 5.0 0.6
Cone height 3.0 0.5 Torus tube radius 2.0 0.4
Cone radius 2.0 0.3

Table 1: Properties of normal distribution of primitive parameters.

2.4 Feature space visualization

To better understand the classification properties of individual SVMs the sepa-
rating hyper-surfaces are visualized. Because the feature spaces have dimensions
between 64 and 512, PCA is used to reduce the features spaces to three dimen-
sions. The SVMs were then trained on the dimension reduced training data. For
visualization the training data are visualized by colored points: blue for planes,
green for cylinders, red for cones, cyan for spheres, magenta for ellipsoids, and
yellow for tori. For each binary SVMs of the one-versus-all approach the scalar
field of the data margin was computed. Using the marching cubes algorithm
[LC87] a meshes of the boundary surface was extracted and rendered in the 3d
feature space. Examples are shown in Figure 4.

3 Results

The results of the application of LDA and SVMs for geometric primitive recog-
nition are evaluated with respect to the classification results in terms of true-
positive-rates.

In this section we show classification results of the geometric features in
Section 2.1 used with LDA- and SVM-classification. All results are based on the
same training data of point cloud patches from the six primitive classes. Table
2 shows the confusion matrix for the closed d-class SVM for the simple surflet
combination feature F.12. In the confusion matrix the rows are the primitive
class of the test data and the columns are the detected classes, e.g. in the first
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Fig. 4: Visualization of the separating hyper-surface of the SVM to classify planes
(blue), cones (red), spheres (cyan), cylinders (green), ellipsoids (magenta), and
tori (yellow) from different perspectives in the 3d feature space of the simple
surflet combinations feature F.12.

row there are 311 planar point clouds, of which 304 are classified as planes and
7 are classified as cones. Table 3 shows the true-positive-rates for all features.

The visualization of the reduced feature spaces in Figure 4 allows, much
like the confusion matrix, to identify two or more classes which may not be
separated properly. This is the case if two or more colors are mixed inseparable
in one region of the feature space.

Figure 5(c) shows real scan data colored according to the detected primitives.
For coloring the simple surflet combinations feature F.12 in a closed SVM

(a) Wooden toy firetruck. (b) Point cloud of scanned
firetruck.

(c) Point cloud of firetruck
colored by primitive class.

Fig. 5: A real scan showing a part of a wooden toy firetruck colored by primitive
class using the simple surflet combinations feature F.12: planes (blue), cylinders
(green), cones (red), spheres (cyan), ellipsoids (magenta), tori (yellow).
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Planes 304 0 7 0 0 0 305 0 6 0 0 0 297 0 14 0 0 0

Cyl. 0 298 2 0 0 18 0 299 2 0 0 17 0 291 3 0 0 24

Cones 6 22 294 0 0 3 31 20 266 1 0 7 54 30 230 0 0 11

Spheres 0 0 0 302 16 0 0 0 0 281 37 0 0 0 0 282 36 0

Ellips. 0 0 0 83 240 0 0 0 1 81 238 3 0 0 0 98 208 17

Tori 0 76 1 0 1 247 0 75 4 0 3 243 0 110 3 2 13 197

Table 2: Confusion matrices for features F.12, F.10 and F.5 used with a six-class
cSVM in heat-map coloring.

Feature Histogram LDA cSVM oSVM Feature Histogram LDA cSVM oSVM

F.1 Point angles 0.643 0.713 0.680 F.7 Curvature angles 0.628 0.695 0.603
F.2 Point dist. 0.336 0.366 0.134 F.8 Curvature dir. 0.312 0.443 0.302
F.3 Triangle areas 0.594 0.644 0.558 F.9 Curvature differences 0.356 0.420 0.185
F.4 Tet. vol. 0.612 0.758 0.733 F.10 Surflet pairs 0.720 0.850 0.841
F.5 Normal angles 0.678 0.784 0.755 F.11 Triple combi. 0.765 0.840 0.820
F.6 Normal dir. 0.432 0.582 0.533 F.12 Simple surflet combi. 0.779 0.878 0.866

F.13 Ext. surflet combi. 0.803 0.865 0.848

Table 3: Test results as true positive rate for all learning algorithms and features
of our artificial data set.

4 Discussion

The discussion of the results is split into one section on the classification results
and one section on the quality and influence of the training data.

4.1 Classification results

The geometric features of Section 2.1 categorized as point-based, normal-based,
curvature-based, and combined features are discussed separately.

With a true-positive-rate of 0.758 the tetrahedron volume feature F.4 has the
highest true-positive-rate among point-based features. While performing well for
planes it confuses ellipsoids with spheres and tori with cylinders. The reasons for
this seems to be that the training data for those classes are very similar, see Table
1, and point-based features do not capture curvature information sufficiently.

The normal angles feature F.5 has a classification rate of 0.784 and by that
the highest classification rate among normal-based features. It best performs for
planes and cylinders but is weak for classifying ellipsoids and tori, see Table 2.
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With 0.695 the curvature angle feature F.7 has the highest classification rate
of the curvature-based features. It best classifies planes and has the weakest
performance for ellipsoids and tori. This is due to the fact that the training
data for curved primitives are relatively uniform, see Table 1. This effect can
be observed in all confusion matrices, where basically the same primitives are
confused by all features.

The combined features perform almost equally well. The surflet pair feature
F.10 performs best for planes, cylinders, and spheres, and has better performance
for cones, ellipsoids, and tori than F.4 or F.7. However, it confuses cylinders
with tori, see Table 2. The simple surflet combination feature F.12 performs
best among all described features. It also separates spheres and ellipsoids as well
as cylinders and tori best, see Table 2.

For all features cSVM results were superior to LDA and oSVM results. The
reason for this is that oSVM only labels results with non-negative margin and
LDA can only handle linear separation.

Using cSVM with the simple surflet combination feature F.12 we colored a
real scan of a wooden toy firetruck, see Figure 5. Because of static patch size in
the training process the point cloud was scaled to 10% of its original size. The
three main colors are red, blue, and yellow which correspond to cones, planes,
and tori, respectively. While planes and tori are often labeled right, transitions
between different primitives are classified as cones. Taking into account the cone
hypersurface from Figure 4 one can see that the cone class border is very close
to all other feature classes. This results in frequent miss-classification as cones.

4.2 Training data

One disadvantage of using machine learning for primitive classification is the
need for a large set of training data. Since there is no simple way to collect and
produce enough real scans for training we uased simulated scans. However, our
scan simulator generates scans that have different characteristics compared to
real scans. They are different in density and uniformity of the scanned point
clouds. Distribution of the scan lines across the surface of the scanned object
are different for each human operator. Usually real laser scanners are manually
guided and therefore distances between the scan lines vary. The scan simulator
rotates the fan by a defined angle and generates uniform distances between
different scan lines.

The error model of our simulator only covers errors in the measured distance
and in the position of the laser or the camera. Error caused by specular reflections
are not simulated, but can occur for polished objects. This could be solved by
using real scans for the training or extending the scan simulator. Improving the
scan simulator could be done by using real random scan paths instead of simple
random points for sweeping and including an error model for surface reflections.

Patches extracted from point clouds typically contain a few hundred points.
For training, those patches were extracted from point clouds containing only
one primitive. When classifying real scenes, patches will often contain not only
a part of one, but multiple or no primitives at all. In open classification those
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patches might remain unclassified. In closed classification they would be clas-
sified to the wrong class. Decreasing the size of the input patch would make
classification of smaller patches possible. The smallest possible patch would be
the local neighborhood of one point.

We estimate curvatures and normals using the 100-nearest neighbors of a
point. For our simulated point clouds this value was sufficient to yield stable
values for normals and curvatures. In case the point cloud is very dense, more
points are needed to cover a sufficiently large patch for estimation. The same
applies for sparse point clouds were too many neighbors result in insufficient
neighborhoods. Using small neighborhoods in very noisy point clouds would lead
to high approximation errors. Because features based on normals and curvatures
heavily rely on point neighborhood, they are not scale invariant.

5 Conclusion

We present a method for primitive recognition based on point cloud classifica-
tion using support vector machines. Our set of features is normal-, point-, and
curvature-based. Based on simulated scans a large set of training data was gen-
erated to train and compare results of LDA and open/closed SVM classification.
The geometric features were compared with respect to true-positive-rates and
optimal SVM parameters. Resulting classifiers were applied to a real scan.

We have evaluated the discriminative power of different features and feature
combinations for primitive classification. Especially closed SVM classification
used with a combined feature is showing promising results in classifying prim-
itives. Results of curvature based features did not meet our expectations. This
might be because of high similarity between some classes within the training set.
By using our method as a pre-processing step in fitting, deciding the geometric
primitive for noisy point clouds can be improved. This might also lead to less
iterations for iterative fitting methods.

For future work we intend to detail the pros and cons of various geometric
features and their dependence on the distribution of the training data for SVM
classification. To generate simulated scans that match real scans as close as
possible is another aspect we plan to investigate. Additionally we plan to extend
the machine learning methods to multi-output SVMs and other methods from
machine learning to allow for a lager set of geometries to recognize.
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A Additional geometric features and model selection

For comparison additional geometrical features were tested, see Table 4. For
optimization results of the SVM model selection refer to Table 5.

A.1 Centroid distances are computed as distance of random points to the bound-
ing box centroid, [OFCD02].
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A.2 Cube cell count is computed by subdividing the point cloud’s bounding box
into equally sized cells and counting the points in each cell. This feature is
not invariant to rotation.

A.3 K-Median points are computed by clustering the points into k clusters,
such that the sum of distances of points in the cluster to their median is
minimized. The coordinates of the resulting medians are concatenated to
one feature vector of size 3k.

A.4 The moduli of principal curvatures κ1, κ2 as in Section 2.1 yield two con-
catenated histograms.

A.5, A.6, and A.7 mean curvatures H = (κ1 + κ2)/2, Gauss curvatures K =
κ1κ2, and curvature ratios |κ1/κ2|.

A.8 Curvature changes are computed as the absolute difference between a ran-
dom point’s principal curvatures and those of its nearest neighbor and yield
two concatenated histograms.

A.9 Shape indices as in [KvD92].

The histograms of the geometric features A.5, A.6, A.7, and A.8 are cropped
to range between the 0.05 and 0.95 percentiles. All these features are less effective
in the experiments with a true-positive-rate below 0.5.

Feature Histogram LDA cSVM oSVM Feature Histogram LDA cSVM oSVM

A.1 Centroid distances 0.417 0.465 0.153 A.6 Gauss curvature 0.214 0.241 0.021
A.2 Cube cell count 0.340 0.449 0.358 A.7 Curvatures ratio 0.286 0.302 0.035
A.3 K-Median points 0.164 0.240 0.015 A.8 Curvature change 0.260 0.277 0.014
A.4 Principal curvatures 0.271 0.301 0.034 A.9 Shape index 0.296 0.302 0.034
A.5 Mean curvature 0.237 0.268 0.030

Table 4: True positive rate of additional geometric features.

Feature Histogram C γ Feature Histogram C γ

F.1 Point angles 10000 0.4 F.12 Simple surflet combinations 1000 0.1
F.2 Point distances 10000 0.6 F.13 Extended surflet combinations 50 0.1
F.3 Triangle areas 10000 0.25 A.1 Centroid distances 20000 0.01
F.4 Tetrahedron volumes 1000 2 A.2 Cube cell count 100 0.1
F.5 Normal angles 20000 0.25 A.3 K-Median points 0.01 0.01
F.6 Normal directions 50 0.5 A.4 Principal curvatures 0.1 2
F.7 Curvature angles 100 0.1 A.5 Mean curvature 0.1 5
F.8 Curvature directions 5 0.1 A.6 Gaussian curvature 0.1 20
F.9 Curvature differences 100 0.6 A.7 Curvatures ratio 0.1 5
F.10 Surflet pairs 10000 0.3 A.8 Curvature change 0.01 1.25
F.11 Triple combinations 50 0.1 A.9 Shape index 0.1 5

Table 5: SVM parameters C and γ for best classification results for each feature.


